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SOLUTIONS FOR ASSIGNMENT #10

Reading Assignments:
The subsection on ”Mandelstam Variables” in Section 5.4 and the subsection on ”Photon
Polarization Sums” in Section 5.5 of Peskin and Schroeder.

Problem 1
Do Problem 5.2 in Peskin and Schroeder.
Solution:
There are two diagrams: one from the t-channel exchange and one from the s-channel. More-
over, there is a relative minus sign between the diagram coming from anti-commuting the
fermion fields inside the time-ordered product. Using the kinematics e−(k1, r)+ e+(k2, s) →
e−(p1, r

′) + e+(p2, s
′), the amplitude is

iA = iAt − iAs

iAt = +ie2 [ūr′
(p1)γµu

r(k1)][v̄
s′
(p2)γ

µvs(k2)]

(k1 − p1)2 + iε

iAs = +ie2 [v̄s(k2)γµu
r(k1)][ū

r′
(p1)γ

µvs′
(k2)]

(k1 + k2)2 + iε
.

Therefore there are three terms in the spin-sum from |At|2, |As|2, and the interference
between them:

1

4

∑
r,s

∑
r′,s′

|A|2 =
32e4

4(k1 − p1)4
[(p1 · p2)(k1 · k2) + (p2 · k1)(p1 · k2)]

+
32e4

4(k1 + k2)4
[(p1 · k1)(p2 · k2) + (p2 · k1)(p1 · k2)]

+
32e4

4(k1 − p1)2(k1 + k2)2
[(k1 · p2)(p1 · k2) + (p2 · k1)(p1 · k2)] .

The kinematics, on the other hand, can be written as follow when ignoring the electron
mass:

s = 2k1 · k2 = 2p1 · p2

t = −2p1 · k1 = −2p2 · k2

u = −2p1 · k2 = −2p2 · k1.

Now the amplitude-squared becomes
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4

∑
r,s

∑
r′,s′

|A|2 = 2e4

(
u2 + s2

t2
+

t2 + s2

u2
+

2u2

st

)
.
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The differential cross-section is

dσ

d(cos θ)
=

2π|A|2

64π2E2
cm

=
πα2

s

[
u2

(
1

s
+

1

t

)2

+

(
t

s

)2

+
(s

t

)2
]

.

The scattering angle in the CM frame is s = 4E2, t = −2E2(1− cos θ), and u = −2E2(1 +
cos θ). So the t-channel propagator is causing the cross-section to diverge in θ → 0.

Problem 2
Consider the following Lagrangian for the scalar Quantum Electrodynamics:

L = (Dµφ)∗(Dµφ)−m2
φ|φ|2 = (∂µ + ieAµ)φ∗ (∂µ − ieAµ)φ−m2

φφ
∗φ.

(a) Write down the Feynman rule for the interaction vertices in this theory. Be careful
to explain and take into account symmetry factors, if any. (There is actually a subtlety
involving the one-derivative term in the interactions, but you can get the correct answer by
deriving the Feynman rules in the naive way.)
(b) Compute the amplitude for the scattering process φ(k1) + φ∗(k2) → φ(p1) + φ∗(p2) to
the lowest order in e using the following massless propagator for the photon:

−igµν

k2 + iε
.

(c) Compute the amplitude for the scattering process φ(k1) + γ(k2) → φ(p1) + γ(p2) to the
lowest order in e using Feynman rules/diagrams. Be sure to include all possible diagrams.
(d) Now assume the photon is massive and has the following propagator

−i (gµν − kµkν/m
2
A)

k2 −m2
A + iε

.

Repeat (b) and show that the amplitude has a smooth limit in taking mA → 0. (In other
words, the kµkν/m

2
A piece in the massive propagator doesn’t contribute to the amplitude,

just like in the ordinary QED with fermions.)

(e) Write the amplitudes in (c) as ε
(i)
µ ε

(f)
ν Mµν . Show that kµ

2Mµν = pν
2Mµν = 0, again like

in the ordinary QED with fermions.
(f) Show that the Coulomb potential resulting from the process in (b) is attractive, whereas
it is repulsive for the φ + φ → φ + φ scattering.
Solution:
(a) See the Figure. The factor of two in the ”seagull diagram” is because there are two
identical particles in the vertex.
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(b) There are two contributions from the s-channel and t-channel diagrams, respectively,

iA = +ie2

[
(k1 − k2)

µ gµν

(k1 + k2)2 + iε
(p1 − p2)

ν + (k1 + p1)
µ gµν

(k2 − p1)2 + iε
(−k2 − p2)

ν

]
The extra minus sign in the numerator in the t-channel contribution comes from the fact
that the momentum flow in the Feynman rule is correlated with the particle number flow in
the diagram.
(c) There are three diagrams, two from the left vertex in the figure (with the two external
photons exchanged), and one from the right vertex.

iA = −ie2ε(k2)µε(p2)
∗
ν

[
(2k1 + k2)

µ(2p1 + p2)
ν

(k1 + k2)2 + iε
+

(2p1 − k2)
µ(2k1 − k2)

ν

(p1 − k2)2 + iε
− 2gµν

]
.

(d) For the s-channel contribution

iA = +ie2(k1 − k2)
µ (gµν − kµkν/m

2
A)

k2 −m2
A + iε

(p1 − p2)
ν .

Since k = k1 + k2 = p1 + p2, it is immediately clear that the longitudinal piece gives zero
contribution. One can show easily that this is the case for the t-channel contribution as
well. This can be related to the current conservation in the scalar QED:

jµ = −ie(φ∗∂µφ− φ∂µφ∗), ∂µj
µ = 0.

(e) Given

Mµν =
(2k1 + k2)

µ(2p1 + p2)
ν

(k1 + k2)2 + iε
+

(2p1 − k2)
µ(2k1 − k2)

ν

(p1 − k2)2 + iε
− 2gµν .

It is simple to check that kµ
2Mµν = pν

2Mµν = 0.
(f) In the non-relativistic limit the leading contribution is from only the t-channel diagram
and the numerator in the amplitude is (−k2 − p2)

µ(k1 + p1)µ ≈ (−k2 − p2)
0(k1 + p1)0 ∼

−(2mφ)
2. So the amplitude is

iA ≈ +ie2
4m2

φ

|~p1 − ~k2|2

which has the same sign as the Yukawa potential and is thus attractive. On the other hand,
for the φ + φ → φ + φ scattering there is no extra minus sign in the t-channel contribution
due to the momentum flow (as explained in (b)), so the potential is repulsive.
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